

Allen-Bradley

8 Input RTD Module

(Cat. No. 1794-IR8)

User Manual

Important User Information

Because of the variety of uses for the products described in this publication, those responsible for the application and use of this control equipment must satisfy themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements, including any applicable laws, regulations, codes and standards.

The illustrations, charts, sample programs and layout examples shown in this guide are intended solely for example. Since there are many variables and requirements associated with any particular installation, Allen-Bradley does not assume responsibility or liability (to include intellectual property liability) for actual use based upon the examples shown in this publication.

Allen-Bradley publication SGI–1.1, "Safety Guidelines For The Application, Installation and Maintenance of Solid State Control" (available from your local Allen-Bradley office) describes some important differences between solid-state equipment and electromechanical devices which should be taken into consideration when applying products such as those described in this publication.

Reproduction of the contents of this copyrighted publication, in whole or in part, without written permission of Allen–Bradley Company, Inc. is prohibited.

Throughout this manual we make notes to alert you to possible injury to people or damage to equipment under specific circumstances.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss.

Attention helps you:

- identify a hazard
- avoid the hazard
- recognize the consequences

Important: Identifies information that is especially important for successful application and understanding of the product.

Important: We recommend you frequently backup your application programs on appropriate storage medium to avoid possible data loss.

DeviceNet, DeviceNetManager, and RediSTATION are trademarks of Allen-Bradley Company, Inc. PLC, PLC-2, PLC-3, and PLC-5 are registered trademarks of Allen-Bradley Company, Inc. Windows is a trademark of Microsoft. Microsoft is a registered trademark of Microsoft IBM is a registered trademark of International Business Machines, Incorporated.

All other brand and product names are trademarks or registered trademarks of their respective companies.

Using This Manual	<u>P-1</u>
Preface Objectives	<u>P-1</u>
Audience	<u>P-1</u>
Vocabulary	<u>P-1</u>
What This Manual Contains	<u>P-1</u>
Conventions	<u>P-2</u>
For Additional Information	<u>P-2</u>
Summary	<u>P-2</u>
Overview of FLEX I/O and your RTD Module	1-1
Chapter Objectives	1-1
The FLEX I/O System	1-1
How FLEX I/O RTD Modules Communicate with	
Programmable Controllers	<u>1-1</u>
Typical Communication Between an Adapter and a Module	<u> </u>
Features of your Modules	<u> </u>
Chapter Summary	<u> </u>
How to Install Your RTD Input Module	<u>2-1</u>
How to Install Your RTD Input Module	<mark>2-1</mark> 2-1
How to Install Your RTD Input Module Before You Install Your Input Module European Union Directive Compliance	<mark>2-1</mark> 2-1 2-1
How to Install Your RTD Input Module	2-1 2-1 2-1 2-1
How to Install Your RTD Input Module Before You Install Your Input Module European Union Directive Compliance EMC Directive Low Voltage Directive	2-1 2-1 2-1 2-1 2-2
How to Install Your RTD Input Module Before You Install Your Input Module European Union Directive Compliance EMC Directive Low Voltage Directive Power Requirements	2-1 2-1 2-1 2-1 2-2 2-2
How to Install Your RTD Input Module Before You Install Your Input Module European Union Directive Compliance EMC Directive Low Voltage Directive Power Requirements Wiring the Terminal Base Units (1794-TB2 and -TB3 shown)	2-1 2-1 2-1 2-2 2-2 2-2 2-3
How to Install Your RTD Input Module Before You Install Your Input Module European Union Directive Compliance EMC Directive Low Voltage Directive Power Requirements Wiring the Terminal Base Units (1794-TB2 and -TB3 shown) Installing the Module	<u>2-1</u> 2-1 2-1 2-2 2-2 2-3 2-4
How to Install Your RTD Input Module Before You Install Your Input Module European Union Directive Compliance EMC Directive Low Voltage Directive Power Requirements Wiring the Terminal Base Units (1794-TB2 and -TB3 shown) Installing the Module Connecting Wiring for the RTD Module	2-1 2-1 2-1 2-2 2-2 2-3 2-3 2-4 2-5
How to Install Your RTD Input Module Before You Install Your Input Module European Union Directive Compliance EMC Directive Low Voltage Directive Power Requirements Wiring the Terminal Base Units (1794-TB2 and -TB3 shown) Installing the Module Connecting Wiring for the RTD Module Table 2.A	2-1 2-1 2-1 2-2 2-2 2-3 2-4 2-5
How to Install Your RTD Input Module Before You Install Your Input Module European Union Directive Compliance EMC Directive Low Voltage Directive Power Requirements Wiring the Terminal Base Units (1794-TB2 and -TB3 shown) Installing the Module Connecting Wiring for the RTD Module Table 2.A Wiring connections for the 1794-IR8 RTD Input Module	2-1 2-1 2-1 2-2 2-2 2-3 2-4 2-5 <u>2-6</u>
How to Install Your RTD Input Module Before You Install Your Input Module European Union Directive Compliance EMC Directive Low Voltage Directive Power Requirements Wiring the Terminal Base Units (1794-TB2 and -TB3 shown) Installing the Module Connecting Wiring for the RTD Module Table 2.A Wiring connections for the 1794-IR8 RTD Input Module Example of 2-, 3- and 4-wire RTD Wiring to a 1794-TB3 Terminal Base Unit	2-1 2-1 2-1 2-2 2-2 2-3 2-4 2-5 2-6 2-6
How to Install Your RTD Input Module Before You Install Your Input Module European Union Directive Compliance EMC Directive Low Voltage Directive Power Requirements Wiring the Terminal Base Units (1794-TB2 and -TB3 shown) Installing the Module Connecting Wiring for the RTD Module Table 2.A Wiring connections for the 1794-IR8 RTD Input Module Example of 2-, 3- and 4-wire RTD Wiring to a 1794-TB3 Terminal Base Unit Example of 2-, 3- and 4-wire RTD Wiring to a 1794-TB3T	2-1 2-1 2-1 2-2 2-2 2-3 2-4 2-5 2-6 2-6
How to Install Your RTD Input Module Before You Install Your Input Module European Union Directive Compliance EMC Directive Low Voltage Directive Power Requirements Wiring the Terminal Base Units (1794-TB2 and -TB3 shown) Installing the Module Connecting Wiring for the RTD Module Table 2.A Wiring connections for the 1794-IR8 RTD Input Module Example of 2-, 3- and 4-wire RTD Wiring to a 1794-TB3 Terminal Base Unit Example of 2-, 3- and 4-wire RTD Wiring to a 1794-TB3T Terminal Base Unit	2-1 2-1 2-1 2-2 2-2 2-3 2-4 2-5 2-6 2-7 2-7
How to Install Your RTD Input Module Before You Install Your Input Module European Union Directive Compliance EMC Directive Low Voltage Directive Power Requirements Wiring the Terminal Base Units (1794-TB2 and -TB3 shown) Installing the Module Connecting Wiring for the RTD Module Table 2.A Wiring connections for the 1794-IR8 RTD Input Module Example of 2-, 3- and 4-wire RTD Wiring to a 1794-TB3 Terminal Base Unit Example of 2-, 3- and 4-wire RTD Wiring to a 1794-TB3T Terminal Base Unit	2-1 2-1 2-1 2-2 2-2 2-3 2-4 2-5 2-5 2-6 2-7 2-7 2-7

Module Programming	<u>3-1</u>
Chapter Objectives	3-1
Block Transfer Programming	3-1
Sample programs for Flex I/O Analog Modules	3-2
PLC-3 Programming	<u>3-2</u>
Figure 3.1	
PLC-3 Family Sample Program Structure	<u>3-2</u>
PLC-5 Programming	<u>3-3</u>
Figure 3.2	
PLC-5 Family Sample Program Structure	<u>3-3</u>
PLC-2 Programming	<u>3–3</u>
Chapter Summary	<u>3–3</u>
Writing Configuration to and Reading Status from	
Your Module with a Remote I/O Adapter	<u>4-1</u>
Chapter Objectives	4-1
Configuring Your BTD Module	4_1
Bange Selection	4-2
	4_2
Enhanced Mode	4-3
Hardware First Notch Filter	4_4
Throughput in Normal Mode	4_4
Throughput in Finhanced Mode	4_4
Reading Data From Your Module	4_4
Mapping Data for the Analog Modules	4-5
BTD Input Module (1794-IB8) Image Table Mapping	4-5
BTD Analog Input Module (1794-IB8) Read Words	4-5
RTD Analog Input Module (1794-IB8) Write Words	4-6
Word/Bit Descriptions for the 1794-IB8 BTD Analog Input Module	4-6
Chanter Summary	4_8
	<u>+ 0</u>
How Communication Takes Place and I/O Image	
Table Mapping with the DeviceNet Adapter	<u>5-1</u>
Chapter Objectives	<u>5-1</u>
About DeviceNetManager Software	<u>5-1</u>
Polled I/O Structure	<u>5-1</u>
Adapter Input Status Word	<u>5-2</u>
System Throughput	<u>5-3</u>
Mapping Data into the Image Table	<u>5-3</u>
RTD Input Analog Module (1794-IR8) Image Table Mapping	<u>5-3</u>
Memory Map of RTD Analog Input Module	
Image Table – 1794-IR8	<u>5-4</u>
Word/Bit Descriptions for the 1794-IR8 RTD Analog	
	<u> </u>
Detaults	<u> </u>

Calibrating Your Module	<u>6-1</u>
Chapter Objective	6-1
When and How to Calibrate Your RTD Module	6-1
Tools and Equipment	<u>6-1</u>
Manually Calibrating your RTD Input Module	<u>6-2</u>
Flow Chart for Calibration Procedure	<u>6-3</u>
Calibration Setups	<u>6-4</u>
Wiring Connections for the RTD Module	<u>6-4</u>
Read/Write Words for Calibration	<u>6-4</u>
Offset Calibration	<u>6-5</u>
Gain Calibration	<u>6-6</u>
Table 6.A Calibration Resistance/Voltage Values for the 1794-IR8 .	<u>6-6</u>
Calibrating Your RTD Module using DeviceNet Manager	
Software (Cat. No. 1787-MGR)	<u>6-7</u>
	<u>6-1</u>
Gain Calibration	<u>6–10</u>
Creations	
Specifications	<u>A-I</u>
RTD Accuracy at Worst Case	<u>A-3</u>
Derating Curve	<u>A-3</u>
Support Services	<u>6-1</u>
Technical Support	<u>6-1</u>
Engineering and Field Services	<u>6-1</u>
Technical Training	<u>6-1</u>
Repair and Exchange Services	<u>6-1</u>

Using This Manual

Preface Objectives	Read this preface to familiarize yourself with this manual and to learn how to use it properly and efficiently.
Audience	We assume that you have previously used an Allen-Bradley programmable controller, that you are familiar with its features, and that you are familiar with the terminology we use. If not, read the user manual for your processor before reading this manual.
	In addition, if using this module in a DeviceNet system, you must be familiar with:
	 DeviceNetManager[™] Software, cat. no. 1787-MGR Microsoft Windows[™]
Vocabulary	In this manual, we refer to:
	• the individual RTD module as the "module."
	• the programmable controller as the "controller" or the "processor."

What	This	Manual
Conta	ins	

The contents of this manual are as follows:

Chapter	Title	What's Covered
1	Overview of Flex I/O and Your RTD Module	Describes features, capabilities, and hardware components
2	How to Install Your RTD Input Module	Installation and connecting wiring
3	Module Programming	Block transfer programming and programming examples
4	Writing Configuration to and Reading Status from Your Module with a Remote I/O Adapter	Describes block transfer write and block transfer read configurations, including complete bit/word descriptions
5	How Communication Takes Place and I/O Image Table Mapping with the DeviceNet Adapter	Describes communication over the I/O backplane between the module and the adapter, and how data is mapped into the image table
6	Calibrating Your Module	Lists the tools needed, and the methods used to calibrate the RTD input module
Appendix	•	
А	Specifications	Module specifications, accuracy and derating curve

Conventions

We use these conventions in this manual:

In this manual, we show:	Like this:
that there is more information about a topic in another chapter in this manual	
that there is more information about the topic in another manual	More

For Additional Information

For additional information on FLEX I/O systems and modules, refer to the following documents:

Catalog		Publications	
Number	Description	Installation Instructions	User Manual
1787-MGR	DeviceNetManager Software User Manual		1787-6.5.3
	Industrial Automation Wiring and Grounding Guidelines for Noise Immunity	1770-4.1	
1794	1794 FLEX I/O Product Data	1794-2.1	
1794-ADN	DeviceNet Adapter	1794-5.14	1794-6.5.5
1794-ASB	Remote I/O Adapter	1794-5.11	1794-6.5.3

Summary

This preface gave you information on how to use this manual efficiently. The next chapter introduces you to the RTD module.

Overview of FLEX I/O and your RTD Module

Chapter Objectives

The FLEX I/O System

In this chapter, we tell you about:

- what the FLEX I/O system is and what it contains
- how FLEX I/O modules communicate with programmable controllers
- the features of your RTD module

FLEX I/O is a small, modular I/O system for distributed applications that performs all of the functions of rack-based I/O. The FLEX I/O system contains the following components shown below:

Adapter/Power Supply

20125

- adapter/power supply powers the internal logic for as many as eight I/O modules
- terminal base contains a terminal strip to terminate wiring for two- or three-wire devices
- I/O module contains the bus interface and circuitry needed to perform specific functions related to your application

How FLEX I/O RTD **Modules Communicate** with Programmable Controllers

FLEX I/O RTD modules are block transfer modules that interface analog signals with any Allen-Bradley programmable controllers that have block transfer capability. Block transfer programming moves input or output data words between the module's memory and a designated area in the processor data table. Block transfer programming also moves configuration words from the processor data table to module memory.

The adapter/power supply transfers data to the module (block transfer write) and from the module (block transfer read) using BTW and BTR instructions in your ladder diagram program. These instructions let:

- the adapter obtain input or output values and status from the module
- you establish the module's mode of operation.

The illustration describes the communication process.

Typical Communication Between an Adapter and a Module

Features of your Modules

The module label identifies the keyswitch position, wiring and module type. A removable label provides space for writing individual designations per your application. An indicator is provided to show when power is applied to the module.

1794-IR8

Chapter Summary

In this chapter, we told you about the FLEX I/O system and the RTD module, and how they communicate with programmable controllers.

How to Install Your RTD Input Module

In this chapter, we tell you:

- how to install your module
- how to set the module keyswitch
- how to wire the terminal base
- about the indicators

Before installing your analog module in the I/O chassis:

You need to:	As described under:
Calculate the power requirements of all modules in each chassis.	Power Requirements, page 2-2
Position the keyswitch on the terminal base	Installing the Module, page 2-4

ATTENTION: The RTD module does not receive power from the backplane. +24V dc power must be applied to your module before installation. If power is not applied, the module position will appear to the adapter as an empty slot in your chassis.

European Union Directive Compliance

If this product has the CE mark it is approved for installation within the European Union and EEA regions. It has been designed and tested to meet the following directives.

EMC Directive

This product is tested to meet Council Directive 89/336/EEC Electromagnetic Compatibility (EMC) and the following standards, in whole or in part, documented in a technical construction file:

- EN 50081-2EMC Generic Emission Standard, Part 2 Industrial Environment
- EN 50082-2EMC Generic Immunity Standard, Part 2 Industrial Environment

This product is intended for use in an industrial environment.

Before You Install Your Input Module

Low Voltage Directive

This product is tested to meet Council Directive 73/23/EEC Low Voltage, by applying the safety requirements of EN 61131–2 Programmable Controllers, Part 2 – Equipment Requirements and Tests.

For specific information required by EN 61131-2, see the appropriate sections in this publication, as well as the following Allen-Bradley publications:

- Industrial Automation Wiring and Grounding Guidelines For Noise Immunity, publication 1770-4.1
- Guidelines for Handling Lithium Batteries, publication AG-5.4
- Automation Systems Catalog, publication B111

Power Requirements

The wiring of the terminal base unit is determined by the current draw through the terminal base. Make certain that the current draw does not exceed 10A.

ATTENTION: Total current draw through the terminal base unit is limited to 10A. Separate power connections may be necessary.

Methods of wiring the terminal base units are shown in the illustration below.

Wiring the Terminal Base Units (1794-TB2 and -TB3 shown)

RTD Module wiring separate from discrete wiring.

Wiring when total current draw is greater than 10A

Total current draw through any base unit must not be greater than 10A

Installing the Module

The RTD analog module mounts on a 1794-TB2, -TB3 or TB3T terminal base unit.

- **1.** Rotate the keyswitch (1) on the terminal base unit (2) clockwise to position 3.
- Make certain the flexbus connector (3) is pushed all the way to the left to connect with the neighboring terminal base/adapter.
 You cannot install the module unless the connector is fully extended.

ATTENTION: Remove field-side power before removing or inserting the module. This module is designed so **you can remove and insert it under backplane power.** When you remove or insert a module with field-side power applied, an electrical arc may occur. An electrical arc can cause personal injury or property damage by:

- sending an erroneous signal to your system's field devices causing unintended machine motion
- causing an explosion in a hazardous environment Repeated electrical arcing causes excessive wear to contacts on both the module and its mating connector. Worn contacts may create electrical resistance.
- **3.** Before installing the module, check to make sure that the pins on the bottom of the module are straight so they will align properly with the female connector in the terminal base unit.
- **4.** Position the module (4) with its alignment bar (5) aligned with the groove (6) on the terminal base.
- **5.** Press firmly and evenly to seat the module in the terminal base unit. The module is seated when the latching mechanism (7) is locked into the module.
- **6.** Repeat the above steps to install the next module in its terminal base unit.

Connecting Wiring for the RTD Module

Wiring to the RTD module is made through the terminal base unit on which the module mounts.

Compatible terminal base unit are:

Connecting Wiring using a 1794-TB2, -TB3 and -TB3T Terminal Base Units

- Connect the individual signal wiring to numbered terminals on the 0–15 row (A) on the terminal base unit. Connect the high side to the even numbered terminals, and the low side to the odd numbered terminals. See Table 2.A.
- 2. Connect channel common to the associated signal return terminal on row **B**, as shown in Table 2.A.
- 3. Terminate shields:
 - On 1794-TB2 and -TB3 bases only: terminate shields to the associated shield return terminals on row (**B**).
 - On 1794-TB3T bases only: terminate shields to terminals 39 to 46 on row **C**.
- **Important:** 1794-TB2 and -TB3 terminal base units have row (B) bussed together. When you terminate your shields to this row, the shields will be at the same potential as the power supply return.
- **4.** Connect +24V dc to terminal 34 on the **34-51** row (C), and 24V common to terminal 16 on the **B** row.
- **Important:** To reduce susceptibility to noise, power analog modules and discrete modules from separate power supplies.

5. If daisy chaining the +24V dc power to the next base unit, connect a jumper from terminal 51 on this base unit to terminal 34 on the next base unit.

ATTENTION: Do not daisy chain power or ground from the RTD terminal base unit to any ac or dc discrete module terminal base unit.

ATTENTION: The RTD modules do not receive power from the backplane. +24V dc power must be applied to your module before operation. If power is not applied, the module position will appear to the adapter as an empty slot in your chassis. If the adapter does not recognize your module after installation is completed, cycle power to the adapter.

1794-TB2 and -TB3 Terminal Base		ninal Base l	Jnits	1794-TB3T Terminal Base Unit				
Channel	High Signal Terminal	Low Signal Terminal	Signal Return ¹	Shield Return	High Signal Terminal	Low Signal Terminal	Signal Return ¹	Shield Return ²
0	0	1	17	18	0	1	17	39
1	2	3	19	20	2	3	19	40
2	4	5	21	22	4	5	21	41
3	6	7	23	24	6	7	23	42
4	8	9	25	26	8	9	25	43
5	10	11	27	28	10	11	27	44
6	12	13	29	30	12	13	29	45
7	14	15	31	32	14	15	31	46
24V dc Common	16 thru 33			16, 17,	19, 21, 23, 25, 2	7, 29, 31 and	33	
+24V dc power	1794-TB2 – 34 and 51 1794-TB3 – 34 thru 51				34, 35, 50 a	nd 51		
¹ When using a 2-wire RTD, jumper the signal return to the low signal terminal.			gnal	² Terminals 39	to 46 are chassi	s ground.		

Table 2.A Wiring connections for the 1794-IR8 RTD Input Module

ATTENTION: Total current draw through the terminal base unit is limited to 10A. Separate power connections to the terminal base unit may be necessary.

Example of 2-, 3- and 4-wire RTD Wiring to a 1794-TB3 Terminal Base Unit

Example of 2-, 3- and 4-wire RTD Wiring to a 1794-TB3T Terminal Base Unit

4-Wire RTD

3-Wire RTD

2-Wire RTD

Module Indicators

The RTD module has one status indicator that is on when power is applied to the module. This indicator has 3 different states:

A = Status Indicator - indicates diagnostic results and configuration status

B = Insertable label for writing individual input designations

Color	State	Meaning
Red	On	Indicates a critical fault (diagnostic failure, etc.)
	Blinking	Indicates a noncritical fault (such as open sensor, input out of range, etc.)
Green	On	Module is configured and fully operational
	Blinking	Module is functional but not configured
	Off	Module not powered

Chapter Summary

In this chapter, we told you how to install your input module in an existing programmable controller system and how to wire to the terminal base units.

Module Programming

Chapter Objectives

Block Transfer Programming In this chapter, we tell you about:

- block transfer programming
- sample programs for the PLC-3 and PLC-5 processors

Your module communicates with the processor through bidirectional block transfers. This is the sequential operation of both read and write block transfer instructions.

A configuration block transfer write (BTW) is initiated when the RTD module is first powered up, and subsequently only when the programmer wants to enable or disable features of the module. The configuration BTW sets the bits which enable the programmable features of the module, such as scaling, alarms, ranges, etc. Block transfer reads are performed to retrieve information from the module.

Block transfer read (BTR) programming moves status and data from the module to the processor's data table. The processor user program initiates the request to transfer data from the module to the processor. The transferred words contain module status, channel status and input data from the module.

ATTENTION: If the RTD module is not powered up before the remote I/O adapter, the adapter will not recognize the module. Make certain that the RTD module is installed and powered before or simultaneously with the remote I/O adapter. If the adapter does not establish communication with the module, cycle power to the adapter.

The following sample programs are minimum programs; all rungs and conditioning must be included in your application program. You can disable BTRs, or add interlocks to prevent writes if desired. Do not eliminate any storage bits or interlocks included in the sample programs. If interlocks are removed, the program may not work properly.

Your program should monitor status bits and block transfer read activity.

Sample programs for Flex I/O Analog Modules

3–2

The following sample programs show you how to use your analog module efficiently when operating with a programmable controller.

These programs show you how to:

- configure the module
- read data from the module
- update the module's output channels (if used)

These programs illustrate the minimum programming required for communication to take place.

PLC-3 Programming

Block transfer instructions with the PLC-3 processor use one binary file in a data table section for module location and other related data. This is the block transfer control file. The block transfer data file stores data that you want transferred to your module (when programming a block transfer write) or from your module (when programming a block transfer read). The address of the block transfer data files are stored in the block transfer control file.

The same block transfer control file is used for both the read and write instructions for your module. A different block transfer control file is required for every module.

A sample program segment with block transfer instructions is shown in Figure 3.1, and described below.

Figure 3.1 PLC-3 Family Sample Program Structure

Program Action

At power-up, in RUN mode, or when the processor is switched from PROG to RUN, the user program enables a block transfer read. Then it initiates a block transfer write to configure the module.

Thereafter, the program continuously performs read block transfers.

Note: You must create the data file for the block transfers before you enter the block transfer instructions.

The pushbutton allows the user to manually request a block transfer write.

PLC-5 Programming

The PLC-5 program is very similar to the PLC-3 program with the following exceptions:

- block transfer enable bits are used instead of done bits as the conditions on each rung.
- separate block transfer control files are used for the block transfer instructions.

Figure 3.2 PLC-5 Family Sample Program Structure

PLC-2 Programming

The 1794 analog I/O modules are not recommended for use with PLC-2 family programmable controllers due to the number of digits needed for high resolution.

In this chapter, we told you how to program your programmable controller. You were given sample programs for your PLC-3 and PLC-5 family processors.

Program Action

At power-up,in RUN mode, or when the processor is switched from PROG to RUN, the user program enables a block transfer read. Then it initiates a block transfer write to configure the module.

Thereafter, the program continuously performs read block transfers.

The pushbutton allows the user to manually request a block transfer write.

Chapter Summary

Writing Configuration to and Reading Status from Your Module with a Remote I/O Adapter

Chapter Objectives

In this chapter, we tell you how:

- to configure your module's features
- to enter your data
- to read data from your module
- about the read block format

The RTD module is configured using a group of data table words that are transferred to the module using a block transfer write instruction.

The software configurable features available are:

- input/output range selection, including full range and bipolar
- selectable first notch filter
- data reported in °F, °C, unipolar or bipolar count
- enhanced mode

Note: PLC-5 family programmable controllers that use 6200 software programming tools can take advantage of the IOCONFIG utility to configure these modules. IOCONFIG uses menu-based screens for configuration without having to set individual bits in particular locations. Refer to your 6200 software literature for details.

Configuring Your RTD Module

Range Selection

Individual input channels are configurable to operate with the following sensor types:

Input Signal Range		
Resistance	1 t	ο 433Ω
RTD Input Signal Range	Alpha =	Degrees
100 ohm Pt (Euro)	0.00385	-200 to +870°C
100 ohm Pt (U.S.)	0.003916	-200 to +630°C
200 ohm Pt	0.00385	-200 to +630°C
500 ohm Pt	0.00385	-200 to +630°C
100 ohm Nickel	0.00618	-60 to +250°C
120 ohm Nickel	0.00672	-80 to +290°C
200 ohm Nickel	0.00618	-60 to +250°C
500 ohm Nickel	0.00618	-60 to +250°C
10 ohm Copper	0.00427	-200 to +260°C

You select individual channel ranges using write words 1 and 2 of the block transfer write instruction.

Input Scaling

Scaling lets you report each channel in actual engineering units. Scaled values are in integer format.

Range	Degrees	Counts	Maximum Resolution
+1 to 433Ω		10 to 4330	100m Ω
100 ohm Pt Euro	-200 to +870°C	-2000 to +8700	0.1ºC
100 ohm Pt U.S	-200 to +630°C	-2000 to +6300	0.1ºC
200 ohm Pt Euro	-200 to +630°C	-2000 to +6300	0.1ºC
500 ohm Pt Euro	-200 to +630°C	-2000 to +6300	0.1ºC
100 ohm Nickel	-60 to +250°C	-600 to +2500	0.1ºC
120 ohm Nickel	-80 to +290°C	-800 to +2900	0.1ºC
200 ohm Nickel	-60 to +250°C	-600 to +2500	0.1ºC
500 ohm Nickel	-60 to +250°C	-600 to +2500	0.1ºC
10 ohm Copper	-200 to +260°C	-2000 to +26000	0.1ºC
Continued on next page	-	-	

Range	Degrees	Counts	Maximum Resolution
100 ohm Pt Euro	-328 to +1598°F	-3280 to +15980	0.1ºF
100 ohm Pt U.S	-328 to +1166°F	-3280 to +11660	0.1ºF
200 ohm Pt Euro	-328 to +1166°F	-3280 to +11660	0.1ºF
500 ohm Pt Euro	-328 to +1166°F	-3280 to +11660	0.1ºF
100 ohm Nickel	-76 to +482°F	-760 to +4820	0.1ºF
120 ohm Nickel	-112 to +500°F	-1120 to +5000	0.1ºF
200 ohm Nickel	-76 to +482°F	-760 to +4820	0.1ºF
500 ohm Nickel	-76 to +482ºF	-760 to +4820	0.1ºF
10 ohm Copper	-328 to +500°F	-3280 to +5000	0.1ºF

Note: Temperature data has an implied decimal point 1 space to the right of the last digit. (divide by 10). For example, a readout of 1779° would actually be 177.9°.

You select input scaling using the designated words of the write block transfer instruction. Refer to the Bit/Word description for write word 0, bits 00 and 01.

Enhanced Mode

You can select an enhanced mode of operation for this module. The enhanced mode lets you determine the value of an unknown RTD input.

The voltage drop across a precision resistor in the module is taken once each sensor scan, and compared to the unknown input. The result is used to determine the value of the unknown RTD. This results in improved module temperature drift characteristics and accuracy.

However, since the comparision is done each program scan, the result is decreased module throughput.

Hardware First Notch Filter

A hardware filter in the analog to digital converter lets you select a frequency for the first notch of the filter. Selection of the filter influences the analog to digital output data rate and changes the module throughput. Module throughput is a function of the number of inputs used and the first notch filter. Both of these influence the time from an RTD input to arrival at the flexbus backplane.

A/D Filter First Notch Frequency (effective resolution)	10Hz (16-bits)	25Hz (16-bits)	50Hz (16-bits)	60Hz (16-bits)	100Hz (16-bits)	250Hz (13-bits)	500Hz (11-bits)	1000Hz (9-bits)
Number of channels scanned			Sys	stem Through	put (in ms o	r s)		
1	325	145	85	75	55	37	31	28
2	650	290	170	150	110	74	62	56
3	975	435	255	225	165	111	93	84
4	1.3s	580	340	300	220	148	124	112
5	1.625s	725	425	375	275	185	155	140
6	1.95s	870	510	450	330	222	186	168
7	2.275s	1.015s	595	525	385	259	217	196
8	2.60s ¹	1.16s	680	600	440	296	248	224
1 Default setting	•	•	-	•	•		•	•

Throughput in Normal Mode

Throughput in Enhanced Mode

A/D Filter First Notch Frequency (effective resolution)	10Hz (16-bits)	25Hz (16-bits)	50Hz (16-bits)	50Hz 60Hz I6-bits) (16-bits)		250Hz (16-bits)	500Hz (11-bits)	1000Hz (9-bits)					
Number of channels scanned			Sy	stem Through	item Throughput (in ms or s)								
1	650	290	170	150	110	74	62	56					
2	975	435	255	225	165	111	93	84					
3	1.3s	580	340	300	220	148	124	112					
4	1.625s	725	425	375	275	185	155	140					
5	1.95s	870	510	450	330	222	186	168					
6	2.275s	1.015s	595	525	385	259	217	196					
7	2.60s	1.16s	680	600	440	296	248	224					
8	2.925s ¹	1.305s	765	675	495	333	279	252					
1 Default setting			8										

Reading Data From Your Module

Read programming moves status and data from the RTD input module to the processor's data table in one I/O scan. The processor's user program initiates the request to transfer data from the RTD input module to the processor.

Mapping Data for the Analog Modules

The following read and write words and bit/word descriptions describe the information written to and read from the RTD input module. The module uses up to 11 words of input data and up to 4 words of output data. Each word is composed of 16 bits.

RTD Input Module (1794-IR8) Image Table Mapping

RTD Analog Input Module (1794-IR8) Read Words

Decimal Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Word 0		Reserved														
1		Channel 0 Input Data														
2		Channel 1 Input Data														
3		Channel 2 Input Data														
4							С	hannel 3 l	nput Da	ata						
5							С	hannel 4 l	nput Da	ata						
6							С	hannel 5 l	nput Da	ata						
7							С	hannel 6 l	nput Da	ata						
8							С	hannel 7 l	nput Da	ata						
9		Overrange Bits Underrange Bits														
10	0	0	0	0	0	Bad Cal	Cal Done	Cal Range	0	Di St	agnost atus Bi	ic ts	Pwr Up	Reserved	0	0

Decimal Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Word 0			8-bi	it Calibi	ration N	lask			Cal Clk	Cal Hi Cal Lo	Fil	ter Cut	off	Enh	ME	DT
1		RTD 3	В Туре			RTD	2 Туре		RTD 1 Type RTD						уре	
2		RTD 7	' Туре			RTD	6 Туре			RTD 5 T	уре			RTD 4 T	уре	
Where: Enh	ı = Enh	anced														

RTD Analog Input Module (1794-IR8) Write Words

MDT = Module Data Type

Word/Bit Descriptions for the 1794-IR8 RTD Analog **Input Module**

Word	Dec. Bits (Octal Bits)	Description
Read Word 0	00–15 (00–17)	Reserved
Read Word 1	00–15 (00–17)	Channel 0 Input data
Read Word 2	00–15 (00–17)	Channel 1 Input data
Read Word 3	00–15 (00–17)	Channel 2 Input data
Read Word 4	00–15 (00–17)	Channel 3 Input data
Read Word 5	00–15 (00–17)	Channel 4 Input data
Read Word 6	00–15 (00–17)	Channel 5 Input data
Read Word 7	00–15 (00–17)	Channel 6 Input data
Read Word 8	00–15 (00–17)	Channel 7 Input data
Read Word 9	00–07	Underrange bits – these bits are set if the input signal is below the input channel's minimum range.
	08–15 (10–17)	Overrange bits – these bits are set if 1), the input signal is above the input channel's maximum range, or 2), an open detector is detected.
Read Word 10	00–01	Not used - set to 0
	02	Reserved
	03	Powerup bit - this bit is set (1) until configuration data is received by the module.
	04–06	Critical Error bits – If these bits are anything other than all zeroes, return the module to the factory for repair
	07	Unused – set to 0
	08 (10)	Calibration Range bit - set to 1 if a reference signal is out of range during calibration
	09 (11)	Calibration Done bit - set to 1 after an initiated calibration cycle is complete.
	10 (12)	Calibration Bad bit - set to 1 if the channel has not had a valid calibration.
	11–15 (13–17)	Unused – set to 0

Word	Dec. Bits (Octal Bits)					Description								
Write word 0	00-01	Modul	odule Data Type											
		Bit	01	00										
			0	0	°C (de	fault)								
			0											
			1	0	Bipola	r counts scaled between -32768 and +32767								
			1	1	ar counts scaled between 0 and 65535									
	02	Enhan compa reduce	anced mode select – measures voltage drop across a precision resistor in the n pare with the unknown input. This improves module temperature drift characterist uces module throughput.											
	03–05	A/D Fi) Filter First Notch Frequency											
		Bit	Bit 05 04 03 Definition											
			0	0	0	10Hz (default)								
			0	0	1	25Hz								
			0	1	0	50Hz								
			0	1	1	60Hz								
			1	0	0	100Hz								
			1	0	1	250Hz								
			1 1 0 500Hz											
			1	1	1	1000Hz								
	06	Calibra	ation Hig	gh/Low	bit – Th	is bit is set during gain calibration; reset during offset calibration.								
	07	Calibra initiate	Calibration clock – this bit must be set to 1 to prepare for a calibration cycle; then reset to 0 to initiate calibration.											
	08–15 (10–17)	Calibra Bit 8 co	ation ma	ask – Th ids to ch	ie chann annel 0,	el, or channels, to be calibrated will have the correct mask bit set. bit 9 to channel 1, and so on.								

Word	Dec. Bits (Octal Bits)						Description							
Write Word 1	00-03	Channe	nnel 0 RTD Type											
		Bit	03	02	01	00	RTD Type – Range							
			0	0	0	0	Resistance (default)							
			0	0	0	1	No sensor connected – do not scan							
			0	0	1	0	100 ohm Pt α = 0.00385 Euro (-200 to +870°C)							
			0	0	1	1	100 ohm Pt α = 0.003916 U.S. (–200 to +630°C)							
			0	1	0	0	200 ohm Pt α = 0.00385 Euro (-200 to +630°C)							
			0	1	0	1	500 ohm Pt α = 0.00385 Euro (-200 to +630°C)							
			0	0 1 1 0 Reserved										
			0 1 1 1 10 ohm Copper (-200 to +260°C)											
			1 0 0 0 120 ohm Nickel (-60 to +250°C)											
			1	0	0	1	100 ohm Nickel (-60 to +250°C)							
			1	0	1	0	200 ohm Nickel (-60 to +250°C)							
			1	0	1	1	500 ohm Nickel (-60 to +250°C)							
			1	1	0	0	Reserved							
			1101 to) 1111 –	Reserve	d								
	04–07	Channe	el 1 RTD) Type (s	ee bits (00-03)								
	08-11	Channe	el 2 RTD) Type (s	ee bits (00-03)								
	12-15	Channe	el 3 RTD) Type (s	ee bits (00-03)								
Write Word 2	00-03	Channe	annel 4 RTD Type (see write word 1, bits 00-03)											
	04–07	Channe	Channel 5 RTD Type (see write word 1, bits 00-03)											
	08-11	Channe	el 6 RTD) Type (s	ee write	word 1	, bits 00–03)							
	12-15	Channe	el 7 RTD) Type (s	ee write	word 1	, bits 00–03)							

Chapter Summary

In this chapter, you learned how to configure your module's features and enter your data.

How Communication Takes Place and I/O Image Table Mapping with the DeviceNet Adapter

Chapter Objectives

In this chapter, we tell you about:

- DeviceNetManager software
- I/O structure
- image table mapping
- factory defaults

DeviceNetManager software is a tool used to configure your FLEX I/O DeviceNet adapter and its related modules. This software tool can be connected to the adapter via the DeviceNet network.

You must understand how DeviceNetManager software works in order to add a device to the network. Refer to the DeviceNetManager Software User Manual, publication 1787-6.5.3.

Output data is received by the adapter in the order of the installed I/O modules. The Output data for Slot 0 is received first, followed by the Output data for Slot 1, and so on up to slot 7.

The first word of input data sent by the adapter is the Adapter Status Word. This is followed by the input data from each slot, in the order of the installed I/O modules. The Input data from Slot 0 is first after the status word, followed by Input data from Slot 2, and so on up to slot 7.

DeviceNet Adapter

About DeviceNetManager Software

Polled I/O Structure

Adapter Input Status Word

The input status word consists of:

- I/O module fault bits 1 status bit for each slot
- node address changed 1 bit
- I/O status 1 bit

The adapter input status word bit descriptions are shown in the following table.

Bit Description	Bit	Explanation
	0	This bit is set (1) when an error is detected in slot position 0.
	1	This bit is set (1) when an error is detected in slot position 1.
	2	This bit is set (1) when an error is detected in slot position 2.
VO Madula Fault	3	This bit is set (1) when an error is detected in slot position 3.
I/O Module Fault	4	This bit is set (1) when an error is detected in slot position 4.
	5	This bit is set (1) when an error is detected in slot position 5.
	6	This bit is set (1) when an error is detected in slot position 6.
	7	This bit is set (1) when an error is detected in slot position 7.
Node Address Changed	8	This bit is set (1) when the node address switch setting has been changed since power up.
I/O State	9	Bit = 0 – idle Bit = 1 – run
	10 thru 15	Not used – sent as zeroes.

Possible causes for an I/O Module Fault are:

- transmission errors on the Flex I/O backplane
- a failed module
- a module removed from its terminal base
- incorrect module inserted in a slot position
- the slot is empty

The **node address changed** bit is set when the node address switch setting has been changed since power up. The new node address does not take affect until the adapter has been powered down and then powered back up.

System Throughput

System throughput, from analog input to backplane, is a function of:

- the configured A/D filter first notch frequency
- the number of channels actually configured for connection to a specific sensor

The A/D converter which converts channel 0 through 7 analog data to a digital word provides a programmable first notch filter. You can set the position of the first notch of this filter during module configuration. The selection influences the A/D output data rate, thus affecting system throughput.

The number of channels included in each input scan also affects system throughput.

Mapping Data into the Image Table

FLEX I/O RTD analog module data table mapping is shown below.

RTD Input Analog Module (1794-IR8) Image Table Mapping

Decimal Bit	15	14 13 12 11 10 09 08 07 06 05 04 03 02 01 00												00		
Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Read Word 1								Reserv	ed							
2							Ch	annel 0 In	put Data	a						
3							Ch	annel 1 In	put Data	a						
4		Channel 2 Input Data														
5		Channel 3 Input Data														
6		Channel 4 Input Data														
7		Channel 5 Input Data														
8							Ch	annel 6 In	put Data	a						
9							Ch	annel 7 In	put Data	a						
10				Ove	rrange	Bits					U	nderra	ange E	lits		
11	0	0	0	0	0	Bad Cal	Cal Done	Cal Range	0	Diagnos E	stic Sta Bits	atus	Pwr Up	Reserved	0	0
Write Word 1			8	B-bit Ca	libratio	n Mask		<u>.</u>	Cal Clk	Cal Hi Cal Lo	Filt	ter Cu	ltoff	Enh	M	DT
2		RTD 3 Type RTD 2 Type RTD 1 Type RTD 0 Type														
3		RTD 7 Type RTD 6 Type RTD 5 Type RTD 4 Type														
4		Reserved – set to 0														
Where: Enh = Enh	nanced															

Memory Map of RTD Analog Input Module Image Table – 1794-IR8

MDT = Module Data Type

Word/Bit Descriptions for the 1794-IR8 RTD Analog **Input Module**

Word	Decimal Bits (Octal Bits)	Description
Read Word 1	00–15 (00–17)	Reserved
Read Word 2	00–15 (00–17)	Channel 0 Input data
Read Word 3	00–15 (00–17)	Channel 1 Input data
Read Word 4	00–15 (00–17)	Channel 2 Input data
Read Word 5	00–15 (00–17)	Channel 3 Input data
Read Word 6	00–15 (00–17)	Channel 4 Input data
Read Word 7	00–15 (00–17)	Channel 5 Input data
Read Word 8	00–15 (00–17)	Channel 6 Input data
Read Word 9	00–15 (00–17)	Channel 7 Input data
Read Word 10	00–07	Underrange bits – these bits are set if the input signal is below the input channel's minimum range.
	08–15 (10–17)	Overrange bits – these bits are set if 1), the input signal is above the input channel's maximum range, or 2), an open detector is detected.

Word	Decimal Bits (Octal Bits)					Description			
Read Word 11	00–01	Not use	Not used – set to 0						
	02	Reserv	Reserved						
	03	Power	up bit –	this bit i	s set (1)	until configuration data is received by the module.			
	04–06	Critica factory	I Failure for repa	e Bits – ir.	If these	bits are anything other than all zeroes, return the module to the			
	07	Unused	d – set to	0 0					
	08 (10)	Calibra	ation Ra	nge bit	- set to	1 if a reference signal is out of range during calibration			
	09 (11)	Calibra	ation Do	ne bit -	set to 1	after an initiated calibration cycle is complete.			
	10 (12)	Calibra	ation Ba	d bit – s	set to 1 i	f the channel has not had a valid calibration.			
	11–15 (13–17)	Unused	d – set to	0 0					
Write Word 1	00–01	Modul	e Data T	уре					
		Bit	01	00					
			0	0	°C (de	fault)			
			0	1	٥F				
			1	0	Bipola	r counts scaled between -32768 and +32767			
			1	1	Unipol	ar counts scaled between 0 and 65535			
	02	Enhan compa	ced mo re with tl	de seleo ne unkno	ct – mea own inpu	sures voltage drop across a precision resistor in the module to it.			
	03-05	A/D Fil	ter Firs	t Notch	Freque	ncy			
		Bit	05	04	03	Definition			
			0	0	0	10Hz (default)			
			0	0	1	25Hz			
			0	1	0	50Hz			
			0	1	1	60Hz			
			1	0	0	100Hz			
			1	0	1	250Hz			
			1	1	0	500Hz			
			1	1	1	1000Hz			
	06	Calibra	ation Hig	gh/Low	bit – Th	is bit is set during gain calibration; reset during offset calibration.			
	07	Calibra initiate	ation clo calibrati	ock – thi on.	s bit mu	st be set to $\overline{1}$ to prepare for a calibration cycle; then reset to 0 to			
	08-15	Calibra Bit 8 co	ation ma	isk – Th ds to ch	e chann annel 0,	el, or channels, to be calibrated will have the correct mask bit set. bit 9 to channel 1, and so on.			

Word	Decimal Bits (Octal Bits)	Description					
Write Word 2	00–03	Channe	el 0 RTD	Туре			
		Bit	03	02	01	00	RTD Type – Range
			0	0	0	0	Resistance (default)
			0	0	0	1	No sensor connected – do not scan
			0	0	1	0	100 ohm Pt α = 0.00385 Euro (–200 to +870°C)
			0	0	1	1	100 ohm Pt α = 0.003916 U.S. (–200 to +630°C)
			0	1	0	0	200 ohm Pt α = 0.00385
			0	1	0	1	500 ohm Pt α = 0.00385
			0	1	1	0	Reserved
			0	1	1	1	10 ohm Copper (-200 to +260°C)
			1	0	0	0	120 ohm Nickel
			1	0	0	1	100 ohm Nickel
			1	0	1	0	200 ohm Nickel
			1	0	1	1	500 ohm Nickel
			1	1	0	0	Reserved
			1101 to) 1111 -	Reserve	ed	
	04–07	Channe	el 1 RTD	Type (s	ee bits (00–03)	
	08-11	Channe	el 2 RTD	Type (s	ee bits (00–03)	
	12-15	Channe	el 3 RTD	Type (s	ee bits (00–03)	
Write Word 3	00-03	Channe	el 4 RTD	Type (s	ee write	word 2	, bits 00–03)
	04–07	Channe	el 5 RTD	Type (s	ee write	word 2	, bits 00–03)
	08-11	Channe	el 6 RTD	Type (s	ee write	word 2	, bits 00–03)
	12-15	Channe	el 7 RTD	Type (s	ee write	word 2	, bits 00–03)
Write Word 4	00–15	Reserv	ed				

Defaults

Each I/O module has default values associated with it. At default, each module will generate inputs/status and expect outputs/configuration.

Modu	le Defaults for:	Factory	Defaults	Real Time Size		
Catalog Number	Description	Input Default	Output Default	Input Default	Output Default	
1794-IR8	8-Input RTD Input	11	4	9	0	

Factory defaults are the values assigned by the adapter when you:

- first power up the system, and
- no previous stored settings have been applied.

For analog modules, the defaults reflect the actual number of input words/output words. For example, for the 8 RTD input analog module, you have 11 input words, and 4 output words.

You can change the I/O data size for a module by reducing the number of words mapped into the adapter module, as shown in "real time sizes."

Real time sizes are the settings that provide optimal real time data to the adapter module.

Analog modules have 15 words assigned to them. This is divided into input words/output words. You can reduce the I/O data size to fewer words to increase data transfer over the backplane. For example, an 8 RTD input module has 11 words input/4 words output with factory default. You can reduce the write words to 0, thus eliminating the configuration setting and unused words. And you can reduce the read words to 9 by eliminating the underrange/overrange and calibration status words.

For information on using DeviceNetManager software to configure your adapter, refer to the DeviceNetManager Software User Manual, publication 1787-6.5.3.

Calibrating Your Module

Chapter Objective

When and How to Calibrate Your RTD Module

In this chapter, we tell you how to calibrate your modules.

Your module is shipped to you already calibrated. If a calibration check is required, the module must be in a FLEX I/O system.

Perform module calibration periodically, based on your application.

Module calibration may also be required to remove module error due to aging of components in your system.

Offset calibration must be done first, followed by gain calibration.

Calibration can be accomplished using any of the following methods:

- manual calibration, as described below.
- 6200 I/O CONFIGURATION software refer to your 6200 software publications for procedures for calibrating.
- DeviceNetManager Software refer to your DeviceNet Manager software documentation for the DeviceNet Adapter Module, Cat. No. 1794-ADN. Some portion of this calibration is included here for use by users proficient with DeviceNet Adapter configuration software.

Tools and Equipment

To calibrate your RTD input module, you will need the following tools and equipment:

Tool or Equipment		Description				
	High Precision Resistors:Lower Precision Resistors:432Ω, 864Ω, 1728Ω,If calibration to rated accuracy is not required, lower precision resi0.01%, 5ppm/°Ccan be used. Add percentage of tolerance and temperature coeffic1 ohm, 0.1%, 5ppm/°Cerror for expected accuracy.					
Precision Resistors OR	Accuracy: Minimum three decades; Decade one – 10 ohm decade, 1 ohm per step, better than 0.005 ohms (0.5% accuracy) Decade two – 100 ohm decade, 10 ohm per step, better than 0.005 ohms (0.05% accuracy) Decade three – 1000 ohm decade, 100 ohm per step, better than 0.01% accuracy					
Precision Decade Resistor Box	Any vendor's model that meets o responsible for assuring that the the vendor. As a service to its cus decade resistor boxes that meet	r exceeds the above specifications c decade box maintains accuracy by p stomers, Allen-Bradley offers this par or exceed the specifications.	an be used. The user is eriodic calibration as specified by tial list of vendors who can supply			
	Electro Scientific Industries Portland, OR Series DB 42	IET Labs Westbury, NY HARS-X Series	Julie Research Labs New York, NY DR 100 Series			
Industrial Terminal and Interconnect Cable	Programming terminal for A-B family processors					

Manually Calibrating your RTD Input Module

You must calibrate the module in a Flex I/O system. The module must communicate with the processor and an industrial terminal. You can calibrate input channels in any order, or all at once.

Before calibrating your module, you must enter ladder logic into the processor memory, so that you can initiate block transfer writes (BTW) to the module, and read inputs from the module (BTR).

Important: To allow the internal module temperature to stabilize, apply power to the module for at least 40 minutes before calibrating.

To manually calibrate the module:

- **1.** Apply a reference to the desired input(s).
- **2.** Send a message to the module indicating which inputs to read and what calibration step is being performed (offset).

The module stores this input data.

- 3. Apply a second reference signal to the module.
- **4.** Send a second message indicating which inputs to read and what calibration step is being performed (gain).

The module computes new calibration values for the inputs.

Once the calibration is complete, the module reports back status information about the procedure.

The following flow chart shows the procedure for calibration.

Important: Perform the offset calibration procedure first, then the gain calibration procedure.

Flow Chart for Calibration Procedure

Wiring Connections for the RTD Module

PTD	1794-TB2	2 and -TB3 Term	Jnits	1794-TB3T Terminal Base Unit						
Channel	High Signal Terminal	Low Signal Terminal	Signal Return ¹	Shield Return	High Signal Terminal	Low Signal Terminal	Signal Return	Shield Return ²		
0	0	1	17	18	0	1	17	39		
1	2	3	19	20	2	3	19	40		
2	4	5	21	22	4	5	21	41		
3	6	7	23	24	6	7	23	42		
4	8	9	25	26	8	9	25	43		
5	10	11	27	28	10	11	27	44		
6	12	13	29	30	12	13	29	45		
7	14	15	31	32	14	15	31	46		
24V dc Common		16 thru 33	3		16, 17,	19, 21, 23, 25, 2	7, 29, 31 and	33		
+24V dc power	1794-TB2 -	- 34 and 51; 179	4-TB3 – 34 1	thru 51	34, 35, 50 and 51					
¹ When using a 2-wi terminal.	re RTD, jumper t	he signal return	² Terminals 39	to 46 are chassi	s ground.					

Read/Write Words for Calibration

Decimal Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Read Word 10	0	0	0	0	0	Bad Cal	Cal Done	Cal Range	0	Diagnos E	stic Sta Bits	tus	Pwr Up	Reserved	0	0
Write Word 0		8-bit Calibration Mask							Cal Clk	Cal Hi Cal Lo	F	ilter Cu	Itoff	Enh	M	DT

6–5

Offset Calibration

Inputs can be calibrated one at a time or all at once. To calibrate the offsets for all inputs at once, proceed as follows:

- 1. Connect 1.00 ohm resistors across each input channel. Connect the low signal side to 24V dc common. (If using a decade box, connect all high signal terminals together and attach to one lead from the decade box. Connect all low signal terminals together and attach to the other lead and to 24V dc common. Set the decade box for 1.00 ohm.)
- 2. Apply power to the module for 40 minutes before calibrating.
- **3.** After the connections stabilize, use a block transfer write to set the bit(s) in the calibration mask that correspond to the channel(s) you want to calibrate to 1. (Bits 08 through 15 in write word 0.)
- **4.** Send another block transfer write to set the cal-clk bit (07 in write word 0) to 1.
- **5.** Monitor the cal-done bit (09 in read word 10). If the calibration is successful, the cal-done bit will be set to 1. Verify that the bad-cal bit (10 in read word 10) and the cal-range bit (08 in read word 10) are not set (0).
- **6.** Send another block transfer write to set the cal-clk bit (07 in write word 0) to 0.
- **7.** Monitor the cal-done bit (09 in read word 10). The cal-done bit will be reset to 0.
- 8. If the calibration is successful, proceed to the gain calibration.

Gain Calibration

After completing the offset calibration, proceed with the gain calibration.

 Connect resistors across each input channel. Connect the low signal side to 24V dc common. (Resistor values are shown in table 6.A.) (If using a decade box, connect all high signal terminals together and attach to one lead from the decade box. Connect all low signal terminals together and attach to the other lead and to 24V dc common. Set the decade box for the value shown in table 6.A.)

Table 6.A Calibration Resistance/Voltage Values for the 1794-IR8

Type of RTD	Analog/Digital Gain ¹	Offset Calibration Value (Ideal Counts)	Gain Calibration	Ideal Unipolar Analog/Digital Counts
100 Ω Pt. (alpha = 0.00385) 100 Ω Pt. (alpha = 0.003916) 120 Ω Nickel (alpha = 0.00672) 100 Ω Nickel (alpha = 0.00618) 10 Ω Copper (alpha = 0.00427)	8 (default)	1Ω, 0.1%, 5ppm/⁰C	432Ω, 0.01%, 5ppm/ºC	65084 (H'FE3C)
200Ω Pt. (alpha = 0.00385) 200Ω Nickel (alpha = 0.00618)	4	1Ω, 0.1%, 5ppm/ºC	864Ω, 0.01%, 5ppm/ºC	65084 (H'FE3C)
500Ω Pt. (alpha = 0.00385) 500Ω Nickel (alpha = 0.00618)	2	1Ω, 0.1%, 5ppm/ºC	1728Ω, 0.01%, 5ppm/ºC	65084 (H'FE3C)

¹ Gain is automatically set when RTD is selected.

- 2. Apply power to the module for 40 minutes before calibrating.
- **3.** After the connections stabilize, send a block transfer write to the module to set the bit in the calibration mask that corresponds to the channel to be calibrated to 1, and the hi/lo bit (bit 06 in write word 0) to 1. (Set bits 08 through 15 in write word 0 if calibrating all inputs at one time.)
- **4.** Send another block transfer write to set the cal-clk bit (07 in write word 0) to 1.
- **5.** Monitor the cal-done bit (09 in read word 10). If the calibration is successful, the cal-done bit will be set to 1. Verify that the bad-cal bit (10 in read word 10) and the cal-range bit (08 in read word 10) are not set (0).
- 6. Send another BTW to set the cal-clk bit (07 in write word 0) to 0.
- **7.** Send another BTW to set the hi/lo bit (bit 06 in write word 0) to 0.
- **8.** Monitor the cal-done bit (09 in read word 10). The cal-done bit will be reset to 0.

- **9.** If individually calibrating channels, repeat steps 1 through 7 for offset calibration on any additonal channels you want to calibrate.
- **10.**Send a block transfer write to the module to clear all calibration mask bits to 0.

The following procedure assumes that you are using DeviceNet Manager software (cat. no. 1787-MGR) and have the RTD module installed in a working system.

Calibration is performed in the following order:

- offset calibration
- gain calibration

Offset Calibration

Inputs can be calibrated one at a time or all at once. To calibrate the offsets for all inputs at once:

- 1. Connect 1.00 ohm resistors across each input channel. Connect the low signal side to 24V dc common. (If using a decade box, connect all high signal terminals together and attach to one lead from the decade box. Connect all low signal terminals together and attach to the other lead and to 24V dc common. Set the decade box for 1.00 ohm)
- 2. Apply power to the module for 40 minutes before calibrating.
- **3.** Click on Configure for the slot containing the RTD module.

Calibrating Your RTD Module using DeviceNet Manager Software (Cat. No. 1787-MGR) The following screen appears:

1794-IR8 - 8 Pt. RTD Analog I/O Module							
Module Slot Position 0 I/O Data Sizes	Save to Flex I/O OK Set to Defaults Cancel Calibration Data Description						
Configuration <u>M</u> odule Data Type A/D <u>F</u> ilter First Notch Frequency	Degrees Centigrade						
RTD Type							
Channel D Resistance	Channel 4 Resistance						
Channel 1 Resistance	Channel 5 Resistance						
Channel 2 Resistance	Channel <u>6</u> Resistance						
Channel <u>3</u> Resistance	Channel Z Resistance						

4. Click on <u>Calibration</u> to get to the calibration screen.

- 1794-IR8/IT8 I/O Module Calibration						
Channel Selection		Calibration Type				
In	put Data Values	<u>O</u> ffset Calibration				
Channel 0		0 <u>G</u> ain Calibration				
Channel <u>1</u>		Start Calibration				
Channel <u>2</u>		Close				
Channel <u>3</u>						
Channel <u>4</u>						
Channel <u>5</u>						
Channel <u>6</u>						
Uhannel <u>7</u>	G <u>e</u> t Data					
Calibration Status:						

- 5. Click on the channels you want to calibrate.
- Click on the radio button I for offset calibration. Then click on <u>Start Calibration</u>.

1794-IR8/IT8 I/O Module Calibration						
Channel Selection Input Data Values	Calibration Type					
🗵 Channel <u>O</u>	O <u>G</u> ain Calibration					
Channel <u>1</u>	Start Calibration					
Channel <u>2</u>	Close					
Channel <u>3</u>						
Channel <u>4</u>						
Channel <u>5</u>						
Channel <u>6</u>						
Channel <u>7</u>	G <u>e</u> t Data					
Calibration Status: Offset Calibration Successful						

7. When calibration is complete, a notification will appear on the calibration status line.

8. If calibration was not completed successfully, you will see a popup similar to the following:

9. To see what the values are for the channels, click on the <u>Get Data</u> button. This populates the screen with the actual values appearing at the inputs. Note that there is an implied decimal point before the last digit in the value. For example, channel 0 data value reads 10. The actual reading is 1.0. The -1 indications on the remaining channels indicate open channels.

1794-IR8/IT8 I/O Module Calibration						
Channel Selection		Calibration Type				
Ir	nput Data Values	<u>O</u> ffset Calibration				
🗵 Channel <u>O</u>	10	O <u>G</u> ain Calibration				
🗌 Channel <u>1</u>	-1	Start Calibration				
Channel <u>2</u>	-1	Close				
Channel <u>3</u>	-1					
Channel <u>4</u>	-1					
Channel <u>5</u>	-1					
🗌 Channel <u>6</u>	-1					
Channel <u>7</u>	-1	Get Data				
Calibration Status: Received open response						

Gain Calibration

Make sure that you have calibrated the offset for this channel before calibrating the gain.

- Connect resistors across each input channel. Connect the low signal side to 24V dc common. (Resistor values are shown in table 6.A.) (If using a decade box, connect all high signal terminals together and attach to one lead from the decade box. Connect all low signal terminals together and attach to the other lead and to 24V dc common. Set the decade box for the value shown in table 6.A.)
- 2. Click on the channels you want to calibrate.
- 3. Click on the radio button 💽 for gain calibration. Then click on Start Calibration

1794-IR8/IT8 I/O Module Calibration				
Channel Selection	Calibration Type			
Input Data Values	 <u>Urrset Calibration</u> <u>Gain Calibration</u> 			
Channel 1	Start Calibration			
Channel 2				
Channel <u>3</u>	<u></u> 1030			
Channel <u>4</u>				
Channel 6				
Channel 7				
Calibration Status: Cain Calibration				
Campration Status: Vain Campration	I Succession			

4. When calibration is complete, a notification will appear on the calibration status line.

The **better** button populates the screen with the actual values appearing at the inputs. Note that there is an implied decimal point before the last digit in the value. For example, if channel 0 data value reads 6299. The actual reading is 629.9.

1794-IR8/IT8 I/O Module Calibration				
Channel Selection		Calibration Type		
In	put Data Values	O Offset Calibration		
🗵 Channel <u>O</u>	6299	• <u>G</u> ain Calibration		
Channel <u>1</u>		Start Calibration		
🗌 Channel <u>2</u>		Close		
Channel <u>3</u>				
🗌 Channel <u>4</u>				
Channel <u>5</u>				
🗌 Channel <u>6</u>				
Channel <u>7</u>		Get Data		
Calibration Status: Received open response				

6–11

After both offset and gain calibrations are successful, click on

You will be returned to the module configuration screen. Either "Save to Flex I/O" (adapter), or save to a file by clicking on the appropriate button.

- 1794-ADN Flex I/O Configuration				
Flex I/O Adapter	ALLEN-BRADLEY			
Node Address 22				
Madula Configuration	Load from File			
Module Type Configuration	Load from Flex 1/0 Close			
8pt RTD Analog Input Module 🔹 Slot 0				
8pt Relay Output Module 👱 Slot <u>1</u>	Save to File			
Empty Slot 2	Save to Flex 1/0 Help			
4pt Analog Output Module 👤 Slot <u>3</u>	1/0 Configuration			
8 Pt Analog Input Module Slot 4	Run> Idle Reset Outputs To Zero			
Empty Slot 5	Run> Fault Reset Outputs To Zero			
Empty Slot 6	Idle> Fault Outputs Remain in Idle State 보			
16pt 24 Vdc Src Output Module 🛨 Slot <u>7</u>	Module Fault Zero Inputs			
Type Display: • <u>N</u> ame <u>Catalog</u> No.	Load File Selected			

If you attempt to close without saving your configuration information by clicking on the <u>Close</u> button, you will be prompted to save the changes.

DeviceNet Manager					
•	Save Configuration to File Before Exiting?				
	Yes No Cancel				

Specifications

Specifications – 1794-IR8 RTD Input Module				
Number of Inputs	8 Channels			
Module Location	Cat. No. 1794-TB2, -TB3, -TB3T Terminal Base Unit			
Signal Input Range	1 to 433 ohms			
Sensors Supported	Resistance: 100 ohm Pt $\alpha = 0.00385$ Euro (-200 to +870°C) 100 ohm Pt $\alpha = 0.003916$ U.S. (-200 to +630°C) 200 ohm Pt $\alpha = 0.00385$ Euro (-200 to +630°C) 500 ohm Pt $\alpha = 0.00385$ Euro (-200 to +630°C) 100 ohm Nickel $\alpha = 0.00618$ (-60 to +250°C) 120 ohm Nickel $\alpha = 0.00672$ (-60 to +250°C) 200 ohm Nickel $\alpha = 0.00618$ (-60 to +250°C) 500 ohm Nickel $\alpha = 0.00618$ (-60 to +250°C) 10 ohm Copper $\alpha = 0.00427$ (-200 to +260°C)			
Resolution	16 bits across 435 ohms			
Data Format	16-bit 2's complement or offset binary (unipolar)			
Normal Mode Noise Rejection	60db @ 60Hz for A/D filter cutoff @ 10Hz			
Accuracy without calibration (at low humidity)	Normal mode: 0.05% Full Scale (maximum) Enhanced mode: 0.01% Full Scale (typical)			
Common Mode Rejection	-120db @ 60Hz; -100db @ 50Hz with A/D filter cutoff @ 10Hz			
Common Mode Voltage	0V between channels (common return)			
System Throughput Normal mode: Enhanced mode:	Programmable from 28ms/channel to 325ms/channel 325ms (1 channel scanned) 2.6s (8 channels scanned) – default Programmable from 56ms/channel to 650ms/channel 650ms (1 channel scanned) – default 2.925s (8 channels scanned)			
Settling Time to 100% of final value	Available at system throughput rate			
Open RTD Detection	Out of range reading (upscale)			
Open Wire Detection Time	Available at system throughput rate			
Overvoltage Capability	35V dc, 25V ac continuous @ 25ºC 250V peak transient			
Channel Bandwidth	dc to 2.62Hz (-3db)			
RFI Immunity	Error of less than 1% of range at 10V/M 27 to 1000MHz			
Input Offset Drift with Temperature	1.5 milliohm/ºC maximum			
Specifications continued on next page.				

Specifications – 1794-IR8 RTD Input Module				
Gain Drift with Temperature	Normal mode: 20 ppm/ ^o C maximum Enhanced mode: 10 ppm/ ^o C maximum			
RTD Excitation Current	718.39μA			
Indicators	1 red/green status indicator			
Flexbus Current	20mA			
Power Dissipation	3W maximum @ 31.2V dc			
Thermal Dissipation	Maximum 10.2 BTU/hr @ 31.2V dc			
Keyswitch Position	3			
General Specifications				
External dc Power Supply Voltage Voltage Range Supply Current	24V dc nominal 19.2 to 31.2V dc (includes 5% ac ripple) 19.2V dc for ambient temperatures less than 55°C 24V dc for ambient temperatures less than 55°C 31.2V dc for ambient temperatures less than 40°C See derating curve. 140mA @ 24V dc			
Dimensions Inches (Millimeters)	1.8H x 3.7W x 2.1D (45.7 x 94.0 x 53.3)			
Environmental Conditions Operational Temperature Storage Temperature Relative Humidity Shock Operating Nonoperating Vibration	0 to 55°C (32 to 131°F) See derating curve. -40 to 85°C (-40 to 185°F) 5 to 95% noncondensing (operating) 5 to 80% noncondensing (nonoperating) 30 g peak acceleration, 11(+1)ms pulse width 50 g peak acceleration, 11(+1)ms pulse width Tested 5 g @ 10-500Hz per IEC 68-2-6			
Agency Certification (when product or packaging is marked)	 CSA certified CSA Class I, Division 2, Groups A, B, C, D certified UL listed CE marked for all applicable directives 			
installation instructions	Publication 1794-5.22			

A–3

RTD Accuracy at Worst Case

		Worst Case Accuracy					
RTD Type	Alpha α =	Normal (°C)	Mode (°F)	Enhance (°C)	ed Mode (°F)	Resol (ºC)	ution (°F)
100 ohm Pt (Euro)	0.00385	0.56	1.0	0.280	0.5	0.017	0.031
100 ohm Pt (U.S.)	0.003916	0.55	1.0	0.275	0.5	0.017	0.03
200 ohm Pt	0.00385	0.56	1.0	0.280	0.5	0.034	0.062
500 ohm Pt	0.00385	0.56	1.0	0.280	0.5	0.069	0.124
100 ohm Nickel	0.00618	0.35	0.63	0.175	0.32	0.01	0.018
120 ohm Nickel	0.00672	0.32	0.58	0.160	0.29	0.01	0.02
200 ohm Nickel	0.00618	0.35	0.63	0.175	0.32	0.02	0.039
500 ohm Nickel	0.00618	0.35	0.63	0.175	0.32	0.043	0.077
10 ohm Copper	0.00427	0.51	0.92	0.225	0.46	0.015	0.28

Derating Curve

User Applied 24V dc Supply versus Ambient Temperature

The area within the curve represents the safe operating range for the module under various conditions of user supplied 24V dc supply voltages and ambient temperatures.

= Safe operating area

Symbols

Empty, <u>1</u>, <u>P-1</u>, <u>P-2</u>, <u>1-1</u>, <u>1-3</u>, <u>2-1</u>, <u>3-3</u>, <u>5-3</u>, <u>6-1</u>, <u>A-3</u>, <u>6-1</u>

A

accuracy, worst case, <u>A-3</u> adapter input status word, <u>5-1</u> audience, <u>P-1</u>

В

bit/word description, RTD analog module, 1794-IR8, <u>4-6</u>, <u>5-4</u> block transfer read, <u>1-2</u> write, <u>1-2</u> block transfer programming, <u>3-1</u> block transfer read, <u>4-4</u> 1794-IR8, <u>4-5</u> block transfer write 1794-IR8, <u>4-6</u> configuration block, 1794-IR8, <u>4-6</u> input range selection, <u>4-2</u>

С

calibration gain, <u>6-6</u> manual, <u>6-2</u> offset, <u>6-5</u> periodic, 6-1 preparation, 6-2 setups, <u>6-4</u> tools, <u>6-1</u> types of, 6-1 using decade box, 6-4 using DeviceNet Manager, 6-7 using resistors, <u>6-4</u> calibration flow chart, 6-3 calibration resistance/voltage values, table of, <u>6–6</u> calibration words, <u>6-4</u> communication, between module and adapter, <u>1-2</u> compatible terminal bases, <u>2-5</u> configurable features, 4-1

connecting wiring, <u>2-5</u>, <u>6-4</u> considerations, pre-installation, <u>2-1</u> curent draw, through base units, <u>2-2</u> curve, supply voltage vs ambient temperature, <u>A-3</u>

D

daisy-chaining wiring, <u>2-3</u> default values, <u>5-7</u> derating curve, <u>A-3</u> DeviceNet Manager, software, <u>5-1</u> DeviceNet Manager software, <u>6-7</u>

Ε

enhanced mode, <u>4-3</u> example RTD/1794-TB3, <u>2-7</u> RTD/1794-TB3A, <u>2-7</u>

F

features, of the module, <u>1-3</u> first notch filter, <u>4-4</u> flow chart, calibration, <u>6-3</u>

G

gain calibration, <u>6–6</u> using DeviceNet Manager, <u>6–10</u>

I

I/O module fault, $\underline{5-2}$ indicators states, $\underline{2-8}$ status, $\underline{2-8}$ input ranges, $\underline{4-2}$ input scaling, $\underline{4-2}$ input status word, $\underline{5-2}$ installation, module, $\underline{2-4}$

Κ

keyswitch positions, 2-4

Μ

manual calibration, <u>6-2</u> mapping 1794-IR, <u>4-5</u> 1794-IR8, <u>5-3</u> memory map, 1794-IR8, <u>5-4</u> module, shipping state, <u>6-1</u> module fault, <u>5-2</u> module features, <u>1-3</u> module installation, <u>2-4</u>

0

offset calibration, <u>6-5</u> using DeviceNet Manager, <u>6-7</u> optimal defaults, <u>5-7</u>

Ρ

PLC-2 programming, <u>3-3</u> polled I/O, structure, <u>5-1</u> power defaults, <u>5-7</u> preparing for calibration, <u>6-2</u> programming example PLC-3, <u>3-2</u> PLC-5, <u>3-3</u>

R

range, selecting, <u>4–2</u> read/write words, for calibration, <u>6–4</u> removing and replacing, under power (RIUP), <u>2-4</u> RTD accuracy at worst case, <u>A-3</u> specifications, <u>A-1</u> RTD analog input mapping 1794-IR, <u>4-5</u> 1794-IR8, <u>5-3</u> RTD/1794-TB3 example, <u>2-7</u> RTD/1794-TB3A example, <u>2-7</u>

S

sample program, <u>3–3</u> scaling, <u>4–2</u> software, DeviceNet Manager, <u>5–1</u> specifications, <u>A–1</u> status indicators, <u>2–8</u> system throughput, <u>5–3</u>

Т

terminal bases, compatible, <u>2–5</u> throughput enhanced mode, <u>4–4</u> normal mode, <u>4–4</u>

W

wiring connections, <u>6-4</u> methods of, <u>2-3</u> to terminal bases, <u>2-1</u> wiring connections, <u>2-5</u> 1794-IR8, <u>2-6</u>, <u>6-4</u> worst case accuracy, <u>A-3</u>

Allen-Bradley Publication Problem Report

If you find a problem with our documentation, please complete and return this form.

Pub. Name RTD Module User Manual					
Cat. No. 1794-IR8	Pub. No 1794-6.5.4	Pub. Date January 1996 Part No	955119-77		
Check Problem(s) Type:	Describe Problem(s):		Internal Use Only		
Technical Accuracy	text	illustration			
Completeness What information is missing?	 procedure/step example explanation 	 illustration guideline feature other 	 info in manual (accessibility) info not in manual 		
Clarity What is unclear?					
Sequence What is not in the right order?					
Other Comments Use back for more comments.					
Your Name		Location/Phone			

Return to: Marketing Communications, Allen-Bradley Co., 1 Allen-Bradley Drive, Mayfield Hts., OH 44124-6118 Phone: (216)646-3176 FAX: (216)646-4320

հետեսություններություններություն

Support Services

At Allen-Bradley, customer service means experienced representatives at Customer Support Centers in key cities throughout the world for sales service and support. Our value-added services include:

Technical Support

- SupportPlus programs
- telephone support and 24-hour emergency hotline
- software and documentation updates
- technical subscription services

Engineering and Field Services

- application engineering assistance
- integration and start-up assistance
- field service
- maintenance support

Technical Training

- lecture and lab courses
- self-paced computer and video-based training
- job aids and workstations
- training needs analysis

Repair and Exchange Services

- your only "authorized" source
- current revisions and enhancements
- worldwide exchange inventory
- local support

Rockwell Automation Allen-Bradley

Allen-Bradley, a Rockwell Automation Business, has been helping its customers improve productivity and quality for more than 90 years. We design, manufacture and support a broad range of automation products worldwide. They include logic processors, power and motion control devices, operator interfaces, sensors and a variety of software. Rockwell is one of the world's leading technology companies.

Worldwide representation.

Argentina • Australia • Austral • Bahrain • Belgium • Brazil • Bulgaria • Canada • Chile • China, PRC • Colombia • Costa Rica • Croatia • Cyprus • Czech Republic • Denmark • Ecuador • Egypt • El Salvador • Finland • France • Germany • Greece • Guatemala • Honduras • Hong Kong • Hungary • Iceland • India • Indonesia • Ireland • Israel • Italy • Jamaica • Japan • Jordan • Korea • Kuwait • Lebanon • Malaysia • Mexico • Netherlands • New Zealand • Norway • Pakistan • Peru • Philippines • Poland • Portugal • Puerto Rico • Qatar • Romania • Russia-CIS • Saudi Arabia • Singapore • Slovakia • Slovenia • South Africa, Republic • Spain • Sweden • Switzerland • Taiwan • Thailand • Turkey • United Arab Emirates • United Kingdom • United States • Uruguay • Venezuela • Yugoslavia

Allen-Bradley Headquarters, 1201 South Second Street, Milwaukee, WI 53204 USA, Tel: (1) 414 382-2000 Fax: (1) 414 382-4444